skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Powers, Jordan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Facing constant challenges from various pathogens and pests, plants have evolved different strategies to defend themselves both locally and systemically. A global change in RNA metabolism is one of the necessary steps to mount a long-lasting immunity against present and future invasions.Arabidopsisserine/arginine-rich 45 (SR45) is an evolutionarily conserved RNA-binding protein that regulates multiple steps of RNA metabolism. Our prior study suggested that SR45 acts as a negative regulator of plant immunity. To better understand the molecular mechanism for SR45’s defense role, we examined the metabolic profile in both Col-0 andsr45-1. The results showed a significant accumulation of pipecolic acid (Pip), salicylic acid (SA), and other potential defense compounds insr45-1, indicating an increased systemic immunity. Thesr45–1mutant exhibited an elevated resistance to a wide range of biotrophic pathogen species and insensitivity to Pip, SA, and pathogen pretreatment. Between the two alternatively spliced isoforms, SR45.1 and SR45.2, SR45.1 seemed to be the culprit for the observed immune suppression. Upon examination of the transcriptome profile between Col-0 andsr45-1under either mock orPseudomonas syringae PmaDG3 challenge, we identified 1,125 genes as SR45-suppressed andPmaDG3-induced. Genes that function in SA biosynthesis and systemic acquired resistance were overrepresented, including those coding for WRKY, receptor-like kinases (RLKs), receptor-like proteins (RLPs), protein kinases, and TIR-NBS-LRR proteins. In addition, we identified significant alternative splicing activity in a list of genes due to eithersr45–1alone or bothsr45–1andPmaDG3 challenge. Among them, we characterized the effect of alternative splicing in two candidates,CBRLK1andSRF1. Interestingly, alternative splicing in both exhibited a switch between RLPs and RLKs in the predicted protein products. Overexpressing theirsr45–1dominant isoform in Col-0 led to a partial increase in immunity, suggesting the involvement of both alternative splicing events in SR45-conferred immune suppression. In summary, we hypothesize that SR45 regulates a subset of immune genes at either transcriptional or co-transcriptional pre-mRNA splicing levels to confer its function in systemic immune suppression. 
    more » « less
    Free, publicly-accessible full text available October 31, 2026
  2. Radiosonde observations over Antarctica and the surrounding oceans were enhanced during the Year of Polar Prediction in the Southern Hemisphere (YOPP‐SH) summer Special Observing Period (SOP). Observing System Experiments (OSEs) were conducted in a continuous cycling framework using the Weather Research and Forecasting (WRF) Model and its data assimilation system. Routinely available observations were assimilated in the CTL (control) experiment, and special radiosonde observations from the YOPP‐SH SOP were additionally assimilated in the YOPP experiment. The results were compared to investigate the effects of additional radiosonde observations on analyses and forecasts over and around Antarctica. Verifications against ERA5 re‐analysis, radiosonde observations, and Automatic Weather Station (AWS) observations show overall positive effects of additional radiosonde observations. These positive effects are most noticeable in temperature at lower levels at earlier forecast lead times; afterward, wind forecast improvements at upper levels are the most noticeable. Although routine and special radiosonde observations are concentrated over the eastern and coastal regions of Antarctica (compared to the western and inland regions), the effects of the extra data spread in longitudinal and latitudinal directions; therefore, the effects on the forecasts are not limited to only the areas near the radiosonde observations. A case study reveals how cyclone forecasts are improved through the assimilation of the additional YOPP‐SH SOP radiosonde observations. This study provides insights into future observation strategies in Antarctica, such as horizontal/vertical observation locations, observation variables, and so forth to maximize effects of new observations on forecasts over Antarctica. 
    more » « less
  3. Abstract The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) held seven targeted observing periods (TOPs) during the 2022 austral winter to enhance atmospheric predictability over the Southern Ocean and Antarctica. The TOPs of 5–10-day duration each featured the release of additional radiosonde balloons, more than doubling the routine sounding program at the 24 participating stations run by 14 nations, together with process-oriented observations at selected sites. These extra sounding data are evaluated for their impact on forecast skill via data denial experiments with the goal of refining the observing system to improve numerical weather prediction for winter conditions. Extensive observations focusing on clouds and precipitation primarily during atmospheric river (AR) events are being applied to refine model microphysical parameterizations for the ubiquitous mixed-phase clouds that frequently impact coastal Antarctica. Process studies are being facilitated by high-time-resolution series of observations and forecast model output via the YOPP Model Intercomparison and Improvement Project (YOPPsiteMIIP). Parallel investigations are broadening the scope and impact of the YOPP-SH winter TOPs. Studies of the Antarctic tourist industry’s use of weather services show the scope for much greater awareness of the availability of forecast products and the skill they exhibit. The Sea Ice Prediction Network South (SIPN South) analysis of predictions of the sea ice growth period reveals that the forecast skill is superior to the sea ice retreat phase. 
    more » « less
  4. null (Ed.)
    Abstract The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) had a special observing period (SOP) that ran from 16 November 2018 to 15 February 2019, a period chosen to span the austral warm season months of greatest operational activity in the Antarctic. Some 2,200 additional radiosondes were launched during the 3-month SOP, roughly doubling the routine program, and the network of drifting buoys in the Southern Ocean was enhanced. An evaluation of global model forecasts during the SOP and using its data has confirmed that extratropical Southern Hemisphere forecast skill lags behind that in the Northern Hemisphere with the contrast being greatest between the southern and northern polar regions. Reflecting the application of the SOP data, early results from observing system experiments show that the additional radiosondes yield the greatest forecast improvement for deep cyclones near the Antarctic coast. The SOP data have been applied to provide insights on an atmospheric river event during the YOPP-SH SOP that presented a challenging forecast and that impacted southern South America and the Antarctic Peninsula. YOPP-SH data have also been applied in determinations that seasonal predictions by coupled atmosphere–ocean–sea ice models struggle to capture the spatial and temporal characteristics of the Antarctic sea ice minimum. Education, outreach, and communication activities have supported the YOPP-SH SOP efforts. Based on the success of this Antarctic summer YOPP-SH SOP, a winter YOPP-SH SOP is being organized to support explorations of Antarctic atmospheric predictability in the austral cold season when the southern sea ice cover is rapidly expanding. 
    more » « less